
Pause6 Implementation

Mark overmeer∗

July 28, 2009

Abstract

This document describes implementation details for Pause6, such as file for-
mats and use cases. This results in XML Schema’s, which definethe implemen-
tation requirements.

Contents

1 The daemon 2
1.1 Deamon configuration . 3

2 Archive layout 3
2.1 pause6-constitution . 3
2.2 pause6-references . 3
2.3 pause6-index . 4
2.4 Project releases . 5
2.5 Archive references . 6

3 File formats 6
3.1 General project files . 6

3.1.1 The meta-data file . 7
3.1.2 The release-log file . 7
3.1.3 The status files . 8

3.2 Constitution specific files . 10

4 Use cases 10
4.1 Manage a project . 10
4.2 Submitting a releases . 11
4.3 FTP-server . 11
4.4 Daemon global configuration . 12
4.5 User local configuration . 13
4.6 Optimizing storage . 13

∗markov@cpan.org (The Netherlands)http://solutions.overmeer.net

1

A Schema: Pause6 basic types 15
A.1 Schema wrapper . 15
A.2 Releases . 16

A.2.1 Release states . 17
A.2.2 Release Plan . 18
A.2.3 Release relations . 21
A.2.4 Release dependencies . 22

A.3 Archives . 23
A.4 Processes . 25
A.5 Store . 26
A.6 Scribe . 27
A.7 Authentication . 28
A.8 Rights . 29
A.9 Trust . 31

B Schema: Pause6 file formats 32
B.1 Schema wrapper . 32
B.2 Filerelease-log.xml . 32
B.3 Filearchive-log.xml . 33
B.4 Filearchive-list.xml . 34
B.5 Filesstatus-current.xml andstatus-next.xml 34
B.6 Fileconstitution.xml . 35
B.7 Filerepository.xml . 35
B.8 Filesfilesystem.xml . 36
B.9 User configuration,pause6-config.xml 36

C Schema: Pause6 messages 37
C.1 Schema wrapper . 37
C.2 Accept signature . 39
C.3 Get release status . 39
References . 40
XSD components index . 40

Introduction

The CPAN6/Pause6 project is described in a few different papers. This paper describes
file formats and use cases specific to the Pause6 implementation. This information is
useless without the terminology definitions from paper [1] (“CPAN6 and Pause6 De-
sign”), and the base implementation of CPAN6 in paper [2] (“CPAN6 Implementa-
tion”).

1 The daemon

The Pause6 interpretation of the CPAN6 network features smart servers, and dump
clients. The server will run a daemon, which plays many roles.

2

One daemon runs as Commissioner and Deployer tasks for many archives at once,
as described in paper??. The Commissioner accepts new data into an archive, and the
Deployer make the archive searchable and release downloadable. The terminology dif-
ference between commissioners and deployers is artificial:they have different default
access rules. It is also easy to configure one task to be commissioner and deployer at
the same time.

Besides archives, there are Stores and scribes. The stores will contain the data (per
archive in a separate Repository), and the scribes will distribute the data. Stores are
usually directories on local disk or on a remote ftp-server.

1.1 Deamon configuration

The daemon is simply an archive containing local archive references only. Other
project types are not permitted on this level.

Initially, the archive will certainly be a Pause6 implementations, with strong update
restrictions set. The core archive’s board is responsible for the global server set-up. It
is king over what role is played for which archive (commissioner, deployer, or both)
but will not bother about internal archive configuration.

2 Archive layout

2.1 pause6-constitution

The project named “pause6-constitution” contains the configuration of the archive.
The constitution is published as a release (a directory withsome files in it) signed by a
suffiently large number of board members. It must be visible to all archive accessors.

The constitution contains the following file:

• constitution.xml: is the main configuration file

***name-space-layout.xsd

2.2 pause6-references

The board members control this project “pause6-references”, which is publicly avail-
able information about the configuration with less restrictions than the constitution.
Usually one board member can change this settings, where theconstitution requires
all-but-one signature.

• archive-list.xml: list of archive abbreviations

• deployer-list.xml: list of deployers

archive-list

The archive list is a single file which maps archive alias names to project names within
the archive. These archive reference type of projects are simply directories with some

3

data in it, especially the location and the public encryption key. Those project names
will usually start witharchive-, although that is just by convention.

Archive references have a trust component in them: that partof the reference data
is stored in the archive-list, and has to thereby is signed bythe board before it is
published to the users.

The archive reference project information can get updates.The board may de-
cide that the owners of the referred archives are permitted to update their referencing
information, for instance can update the public key themselves.

deployer-list

Deployers are defined as identities, which on their turn are also maintained as simple
projects. The preferred project names for these deployers start withdeployer-.

The board may decide to open-up that name-space to everyone,so that people can
add themselves as deployer without interference. A reviewer process is required to
check the correctness of the configuration in such case. The reviewer can update the
deployer-list.

2.3 pause6-index

The “pause6-index” project contains the name-space administration of the archive.
The index is a directory, like all Pause6 items are kept like project directories. How-
ever, in this case the directory will usually not get signatures and versions and therefore
stays hidden to normal users.

The board can decide to publish this index on regular intervals as project, or hide
it such that people can only query the archive via the regularinterface.

The index will contain:

• release-list.xml: listing of releases

• archive-log.xml: global overview of modifications

release-list

A single file lists all releases. Per release, it contains thehumanly understandable
project name (in utf8, blanks and other nasty characters permitted), a version indicator
(utf8, syntax unspecified), project type, status flag, and a location. The constitution
can restrict project-names and version numbers with regular expressions.

In general, it is not possible to use project names and version numbers in actual file-
names, because these strings may contain characters which are not permitted in the
platform dependent filename syntax. Therefore, releases will get a (random) number
assigned during upload, and the path to the release administration (the location) will
be derived from that number.

The location may also contain<archive>:<project>, in which case the browser
will need to check thearchive-list for additional information and retry the query
to the new location.

4

The project indicator can not contain an explicit version number; these redirections
are used for the merging of archives: either to solve naming conflicts or to do a lazy
–non-download, abstract– merge. In either case, the version identification does not
change.

archive-log

This file gives an overall activity overview on the releases.When the archive contains
many releases, inspecting their individual moves will get expensive. This log will show
which releases changed their state. The archive-log can be used to inform deployers
and derived archives which releases they need to inspect to become up-to-date.

The archive-log will grow with one line per release change. Happily, the number of
state changes per release has a relatively modest maximum. However, in case this file
grows too large it may get condensed, leaving only the last state change per release.

2.4 Project releases

In the next chapter we will detail more on the expected content of projects, and how
to work with them. On the administrative side of projects, wesee the following files
(again: together in one directory per release)

• meta-data.xml: contains the meta-data of the release, which will not change
over time;

• release-log.xml: detailed trace on all actions involving this release;

• status-current.xml: extract of the log, listing what has sufficient signa-
tures. (The current state of the release)

• status-next.xml: extract of the log, listing what may not have sufficient
signatures yet. (The next state of the release)

• repository.xml: contains the actual location (or locations) of each of the
non-inlined release components.

The reasoning behind this becomes more clear with the examples shown in paper [2].

meta-data

The meta-data file contains meta-data which is provided by the publisher on the mo-
ment the release was uploaded: project name, version number, publisher’s identity, list
of filenames, description, licence, the current list of project authors, and some project
maintenance rules (a kind of project private constitution).

release-log

The release-log contains all changes and all changeable meta-data: signatures of au-
thors, explicit project state changes (for instance deprecation), release expiration.

5

In Perl5 distribution terms: theMakefile.PL andMETA.yml files are used
to specify some meta-data information. Pause6 compliant user tools can extract this
information to provide Pause6 with sufficient data in a standardized format.

status-current

The status file is a combination of all static information from the meta-data file and
an extract of the dynamic release-log information. This information is completed with
sufficient the signatures of authors and CPAN6 commissioners, deployers, and so on
on that data section of the file.

Normal users will work with this status-current file: beforethey download actual
files, they need to inspect this meta-data.

status-next

This file is for the authors of the project: it contains the same static meta informa-
tion but a slightly different dynamic release-log extract:showing the next state of the
release. The number attached signatures is not yet sufficient to tell the users.

2.5 Archive references

In a large mesh of archives, it is hard to collect contact information. Therefore, infor-
mation of remote archives can be kept as “projects” inside anarchive.

In most cases, these archives will have an alias defined in theconstitutional archive-
list. In any case the reverse is true: each alias declared in the archive list requires an
archive reference project.

The archive directory contains the following files:

• definition.xml: describing the remote archive

• public keys and other info required to trust the initial contact to the archive.

The board may decide that other external people own (and maintain) these references,
or can keep this in their own hands.

definition

This file lists the url of the archive, information about the archive’s type, and contact
protocol information. Amongst others, the name of the file which contains the public
key is listed. That key can be used if the public key infrastructure cannot be reached
(i.e. no network available or limited system capabilities).

3 File formats

3.1 General project files

The concept of ‘projects’ is mainly for the users, but not that much for the Pause6
internals. Projects (release names) are used for name-space allocation, and the version

6

string is used to define (optional and artificial) ideas abouta sequence: which release
was last?

The Pause6 archiver uses a unique code to store a release, because the (project)
name a version string are free-format utf8 and therefore canconflict with the file-
system capabilities. For the same reason, filenames as used by the project will get
mutulated by the Pause6 administration.

Each of the files is readible in informal YAML or formal validatable XML. See the
XML specification is section??.

3.1.1 The meta-data file

The meta data is kept per release: over time, any aspect of a project can change:
authors, description, rules, the name, and so on. Changes innext releases of a project
should not destroy information from the past.

The meta-data has to be provided by the client application. In some enviroments –like
perl5–, there is already an infrastructure present to collect these facts: Pause6 requires
a uniform representation of that data. During upload, the client-side tool will convert
the meta-data into a Pause6 structure like:

1 project: Mail::Box
2 version: 2.065
3 authors: pause-id:markov pause-id:sam
4 licence: GPLv3
5 files:
6 filename: Mail::Box-v2.065.tar.gz
7 archives:
8 -
9 name: pause-id

10 type: pause6
11 address: http://pause.cpan.org

3.1.2 The release-log file

Each release directory contains arelease-log file, which contains an incremental
trace on the changes. The format is (globally):

1 -
2 type: request
3 at: Mon May 1 08:52:23 CEST 2006
4 by: pause-id:markov
5 state: upload
6 -
7 type: trace
8 at: Mon May 1 08:52:23 CEST 2006
9 log: publisher validated, trust connection 10

10 -

7

11 type: trace
12 at: Mon May 1 08:52:23 CEST 2006
13 log: upload file
14 by: pause-id:markov
15 filename: Mail::Box-v2.065.tar.gz
16 size: 23123
17 checksum: sha1 SDFIWUOWHCJKHGWIUHWKIC2384729f3scewjhk
18 -
19 type: trace
20 at: Mon May 1 08:52:28 CEST 2006
21 change: store file
22 checksum: sha1 SDFIWUOWHCJKHGWIUHWKIC2384729f3scewjhk
23 filename: SDF/WUO/SDFIWUOWHCJ
24 -
25 type: signature
26 at: Mon May 1 08:55:00 CEST 2006
27 by: pause-id:markov
28 signer: pause-id:markov
29 type: sha1
30 authograph: sha1 DCIOWUFW#$&*FWFHKJ@#YKJ
31 -
32 type: confirm
33 at: Mon May 1 08:55:00 CEST 2006
34 change:
35 state: published
36 -
37 type: confirm
38 at: Mon May 1 08:57:00 CEST 2006
39 change:
40 state: released

3.1.3 The status files

Thestatus-currentandstatus-nextfiles are extractions of therelease-log.
Whenever needed, these status files can be regenerated from the log. The ‘next’

collects the latest information, but does not require sufficient signatures: it is used
to sign release changes. The ‘current’ collects the latest information with sufficient
signatures. If the board decides to change the constitution, that may have implications
for the status files: they need to be regenerated.

1 release:
2 name: Mail::Box
3 version: v2.065
4 publisher: pause-id:markov
5 authors: pause-id:markov pause-id:sam
6 licence: GPLv3
7 state: released

8

8 files:
9 -

10 filename: Mail::Box-v2.065.tar.gz
11 checksum: sha1 GoJWlg9avwW4MzSXbtRZrZPygAw
12 size: 592389
13 archives:
14 -
15 name: pause-id
16 type: pause6
17 location: http://pause.cpan.org
18 -
19 name: pgp
20 type: pgp
21 signatures:
22 -
23 signer: pause-id:markov
24 type: pgp
25 autograph: "@#DFKJO@UWUFH@YC"
26 -
27 archiver:
28 role: commissioner
29 type: pause6
30 address: http://cpan.org/cpan5/
31 trust: connection 10, publisher 90
32 signer: gpg:cpan5@cpan.org
33 type: sha1
34 autograph: sha1 DCIOWUFW#$&*FWFHKJ@#YKJC
35 -
36 archiver:
37 role: deployer
38 type: pause6
39 address: http://perl.example.com/cpan
40 trust: connection 100, commissioner 80
41 signer: gpg:mark@example.com
42 autograph: ASJFIOWURWOHCWjh
43

The authors and publisher all sign therelease-next file. Each person signs
the part upto the dashes, and sends that personal signature to the commissioner, which
will add it to the release-log if the signature is correct. Then a new release-next is
generated.

When enough signatures where received for the next release state, the commis-
sioner will replace therelease-current with the next information. Still, more
signatures may come in: from other authors who thereby add trust to the release. It is
thinkable that signatures are received for project states which already have passed: a
warning will be issued in that case, and the signature ignored.

9

When the release has moved to the next state on the commissioner, that change will be
reflected in the globalarchive-log. That log-file is used to update the deployers.
Deployers only require a signature from the commissioner totrust the data their re-
ceive: they make check the publisher or authors as well, but that data may be expired.

When the release is copied from archive to archive, the commissioner and deployer
parts get repeated. That way, the user can trace how a releasecame to his system. The
trace is required to establish the trust of the release.

If possible, the user will check the signature of the releasefrom his most trusted listed
author. Otherwise, the publisher, commissioner, or deployer. The last option is needed,
for instance, when everything is delivered off-line on CD/DVD. For instance, during
system installation or in a secure environment or when installing a new Linux distri-
bution from scratch. The calculated trust on authenticity must come above an user
adaptable threshold or ask for human intervention.

3.2 Constitution specific files

The Constitution describes rules of the archive, as degreedby archive’s board. Notably,
it does not contain any release or owner information.

This is an example how ”xml2yaml constitution.xml” could look like:

1 archive:
2 alias: cpan-traditional
3 address: http://perl.overmeer.net/cpan
4 board:
5 member: pause-id:people/SAMV
6 member: cacert:john@nlnet.nl
7 permissions:
8 class: author-defaults
9 required-votes:

10 minimum: all
11 permit: release-add release-accept

4 Use cases

In this section, a few use cases are described. The order is rather random, expressing
various ideas which got a place in the design.

The list of use-cases will certainly be extended in future releases of this paper.

4.1 Manage a project

If someone wants to claim a name-space, he simply uploads a first release. Of course,
the publisher must authenticate itself to a level which satisfies the board. For instance,
the publisher must authenticate as part of a certain authority or be listed on a manually
picked list of acceptable authentities.

10

Not only the identity is required to start a project: it must also comply to name-
space rules, for instance in the structure of the name and used characters. Besides, it
may require one or more signatures of the board to start-off.

If you fulfilled the requirements, you can upload your first release. That release
will produce the initial meta-data as required for searching, configuration and such.

The current set of authors is kept in the meta-data of the release. The information
provided for the latest ‘released’ release contains the current set of authors. Until the
first release, the publisher the the author.

When no versioning scheme is used, the release of the projectwhich became ‘re-
leased’ last (and still is in that state) is providing that information. The concepts of
authors and release orderning are configurable.

When a project wants to change name or to split-up, those new names will be con-
sidered new projects. Simply submit a final release of under the original name which
depends on its follow-ups. Dependencies are defined in the release meta-data.

4.2 Submitting a releases

When a publisher sends a new release to the commissioner, it will check that the user
provided prove of identity is sincere (enough) and acceptible for the archive. When
the project name of the release was not seen before, a new project is seeded, with the
publisher as author. Otherwise, the permission rules relating to the last release for this
project are checked to see whether the publisher is allowed to upload a new version.

The commissioner transports the uploaded data files to the archive related repository
within its store. Those files are checked to have the correct checksum before they are
written to the store. The size, the checksum, and the original filename of all the files
in the release are kept in the meta-data of the release, and will be signed.

When all files have been received, the publisher will download the meta-data file as
constructed by the commissioner. It will sign this data withhis private key, sending
his signature on the data to the commissioner. Then the release state will become
‘published’.

On the moment that the release is published, all authors of the project will be able
to see (and download) the release meta-data. They may even get an e-mail to inform
them that a signature on the release is needed.

4.3 FTP-server

Can we offer additional services to existing ftp-servers? Quite easily: they already
have their upload and distribution network in place. The additional service that CPAN6
can offer are:

• checking that the data on the ftp-servers is the same on all servers

• offer package search facilities to users (no detailed search)

• automating the search for mirror servers to the users,

11

• provide the user with install tools which also do the download,

• administration of installed software.

To set this up is quite simple: take one of the ftp-servers andflag that one as “the store
of the commissioner”. Scan the directories of that server every hour (or less) for new
files.

The hardest thing is to translate the newly found files into releases. In many cases,
ftp-releases are just single file, which makes this a none-operation. Sometimes, the
archive adds checks files. Some releases are more complex. Then, a version number
needs to be derived (otherwise the files time-stamp is used).

It may be possible to extract more meta-data from the item found on the ftp-server,
for instance if it is an rpm-package. It may be possible to do some extra checks on
the item, for instance because it contains MD5 checksum (like in rpm-packages). In
general, the person who is creating the CPAN6 wrapper will need to spend some time
collecting meta-data which is otherwise provided by the publisher.

Once the meta-data is found, and checksum are generated fromthe files, the release
can be added and directly move into the ‘released’ state. Theprocess which collected
the meta-data will probably sign the data it has collected, so the source can be traced.
All discovered releases in the archive will have the dicovering process as author.

The deployer’s have a much simpler task. As usual, they ask the commissioner for
detected releases. They do not have to use a scribe to copy thedata, because that is
already done by the existing ftp-mirror infrastructure. The only thing they have to do
is to check whether their archive contains the same files: check the checksums on the
files found.

The default deployer functionality is very close to that of the rpmfind websites:
they help locating released material within a set, within the archive. As limitation,
deployers will (in the first implementation of Pause6 at least) not know about archive
content so not provide for searches inside the released material.

4.4 Daemon global configuration

The examples in figures 1 and 2 show the top-level system global archive and one
of the contained archives. Each box is a directory with some data-files, together in
a repository on an accessible store. The system administrators found the top-level
archive, so are by default the administrators of the top-level archive. They may decide
that (a selected set of) users can start their own archive (with or without signature of
the board) or that they have to initiate that themselves.

An archive reference has a (project-)name, and can thereby be downloaded and
installed in the user’s environment. The content will lead the user to the url of the
referred archive, which may be anything. By default –and common practice– thexyz
archive-ref in archivehttp://abcwill lead you tohttp://abc/xyz.

The constitution of the global archive limits the configuration possibilities of the
lower level archives, as those constitutions will reduce the permissions that the projects
can set. For instance, the sysadmins can forbid any archive to accept publications from
non-authors. For this reason, treat archive references as symbolic links.

12

“global” address: http://archives.example.com
Constitution project: pause6-constitution

authors: board = sysadmins
daemon configuration rules.

Archive-ref project: user
authors: sysadmins, publisher: user:root
connects to local username table.

Archive-ref project: tutorials
authors: user:root, publisher: pgp:john
published conference material.

Archive-ref project: pgp
connects to the pgp/gpg infrastructure

etc...
Identity project: pause6-daemon

authors: sysadmins
commissioner, deployer, scribe public key.

Figure 1: Example: global archive

“tutorials” address: http://archives.example.com/tutorials
Constitution project: pause6-constitution

authors: board = pgp:john
archive configuration rules.

Publication project: yapc-eu-cpan6.odt
publisher: pgp:markov
OpenOffice presentation for YAPC::EU.

etc...

Figure 2: Example: archive “tutorial”

4.5 User local configuration

4.6 Optimizing storage

The amount of files and storage can be improved by taking into account that various
projects use the same files: parallel installed releases from one project, and releases
from different projects may have overlapping code. For instance, many projects will
distribute the same license file.

As more complex example, the ImageMagick Perl module requires the ImageMag-
ick C libraries to be installed. The Python version of the interface requires the same
external library. To be certain that you have the right version of all libraries, and
header-files, you have to be very careful about project dependencies.

The solution of many Windows applications is to ship an application with all its
requirements as one big integrated block. All dependency configuration is avoided this
way. When a user runs multiple related applications on the system at the same time,

13

“local” address: file:/home/markov/.cpan6/
Constitution project: pause6-constitution

authors: board = user:markov
personal configuration rules.

Archive-ref project: global
connects to global archive.

Archive-ref project: tutorials
reference to global:tutorials.

Archive-ref project: pauseid
reference to http://pauseid.cpan.org

etc...
Identity author: pauseid:markov

one of my multiple identities.

Figure 3: Example: user archive

multiple copies of exactly the same binary may have to be loaded into memory. This
spoils disk-space, memory, and therewith system performance.

The GIT version control system introduces a nice concept. Based on the idea that you
can determine a simple unique key per file (using MD5), you caneasily check whether
the file you need is already on the system. The concept of aproduct releasedid change
from a collection of versioned filesto simply a collection of files: that two following
project releases both contain a file with the same name but with a different content is
more a ‘coincident’ than a relation. Of course, applications running outside this VCS
may interpret it as more than that.

Seeing a release simply as a set of related files which are selected by they check-
sum, as GIT introduced, has a few considerations:

• multiple archives may build on the same set of files, to represent differentviews.
For instance, one archive could show a sub-set of the files which can be installed,
an other view selects only the documentation files, a third includes the core files
of the project plus extra files to build an rpm, a fourth view only shows that rpm.

Users can decide which archive they want to address, for instance to copy to
local disk. A server may decide to only deploy the pure documentation archive
(to create a search facility). To create a (Linux or FreeBSD)distribution CD,
one may take a clone of the rpm archive.

• you do not need to apply a sequence of patches to go from a file(name) in one
release to the same file(name) in the next one, so both the VCS as the client side
can be dumb in this respect. The data can be stored on any general ftp-server or
directory structure.

• the release index (part of the releases meta-data, providedat upload) defines that
is most important: which set of files will work together. Thatis more important
than tracing the changes between two releases. The precise changes are not
important for end-users, in general.

14

• some (graphical) tool can help you maintaining a project by displaying the re-
lated views in different archives. For instance, the tool can detect that the rpm is
out-dated because one of its building-bricks has a new release.

Application

The tric of unifying equivalent files from various sources based on their checksum
can be applied on many places. On the stores, the files will need to be kept some
form of encoded, because CPAN6 permits unicode file-labels and version numbers
without restrictions: many file-systems, operating-systems, and transport protocols
can not handle those names. Therefore, the release index needs to connect the abstract
transport filename with an original filename. Only on the user’s system, mutulations
may be needed to get the data to work. In the ideal world, the user’s system understand
unicode filenames.

Stores may consider to use the checksum of the file as abstractfilename. Client-
applications may be smart enough to keep track on the checksums of downloaded and
installed files to avoid dupplicate downloading. Client applications may install a file
which is already available elsewhere on the system by creating a hard-link.

MD5 checksums are quite weak: it is possible to produce a different file with the same
MD5 within minutes. Accidental collisions are close to impossible, but the are unsuf-
ficient to proof trust. Therefore, a better checksum is adviced, either additional in the
index or as filename. Which type of checksum is used is part in the trust computation.

Perl5

The Perl community distributes code as tar-balls (files packed into onetar archive
which then is compressed usinggzip) This has the advantaged that all files are loaded
at once, but postpones the above optimization of file-folding to after the downloading.
Besides, how to handle unicode filenames within the tar archive (conversions not sup-
ported)?

It may be useful to change the current tar-ball practice for these reasons.

A Schema: Pause6 basic types

The schema defined in this section defines basic types used forPause6. They extend
the basic types of CPAN6.

A.1 Schema wrapper

This schema uses the Dublin Core (http://dublincore.org) definitions for
document meta-data.

1 <schema
2 xmlns="http://www.w3.org/2001/XMLSchema"
3 elementFormDefault="qualified"
4
5 targetNamespace="http://cpan6.net/2008/pause6-basic"
6 schemaLocation="https://xml.cpan6.net/schema/2008/pause6-basic.xsd"

15

7 version="1.0"
8
9 xmlns:p6="http://cpan6.net/2008/pause6-basic"

10 xmlns:c6="http://cpan6.net/2008/cpan6-basic"
11 >
12
13 <import
14 namespace="http://cpan6.net/2008/cpan6-basic"
15 location="https://xml.cpan6.net/schema/2008/cpan6-basic.xsd" />

A.2 Releases

pause6-release
Pause6 adds security and trust to CPAN6 releases. Thecreator is only used to honor
people who contributed to the package, but has no additionalvalue. Asauthor, the
content responsible idenities are listed. Thepublisher is responsible for the distri-
bution.

Each release can specify a new set of authors and permissions. Both authors and per-
missions are only effective when the release is accepted. So, whether the publisher is
permitted to upload, change authors or permissions is defined by the previous release.
The acceptable changes also depend on the rules in the constitution.

Pause6 defines some additional release types:
x-cpan6/pause6-constitution,
x-cpan6/pause6-index,
x-cpan6/pause6-archive-ref,
x-cpan6/pause6-identity,x-cpan6/pause6-license, and
x-cpan6/pause6-process. The latter defines a daemon or scribe.

1 <element name="pause6-release" type="p6:pause6-release"
2 substitutionGroup="c6:release-extension"/>
3
4 <complexType name="pause6-release">
5 <complexContent>
6 <extension base="c6:release-extension">
7 <sequence>
8 <element name="creator" type="c6:release-id"
9 minOccurs="0" maxOccurs="unbounded" />

10 <element name="author" type="c6:release-id"
11 minOccurs="0" maxOccurs="unbounded" />
12 <element name="publisher" type="c6:release-id" />
13 <element name="permit" type="p6:permission-set"
14 minOccurs="0" maxOccurs="unbounded" />
15 <element name="depends" type="p6:dependencies" minOccurs="0" />
16 <element name="license" type="c6:release-id"
17 minOccurs="0" maxOccurs="unbounded" />
18 <element name="plan" type="p6:release-plan" minOccurs="0" />
19 </sequence>
20 </extension>
21 </complexContent>
22 </complexType>

16

release-component
Security for files is implemented by protected complex checksum for each of the pub-
lished files. When more than one checksum is provided, they will use different formats.
Only the ‘best’ format which is supported by the client will need to be checked.

1 <complexType name="release-component">
2 <complexContent>
3 <extension base="c6:release-component">
4 <sequence>
5 <element name="checksum" type="p6:checksum"
6 minOccurs="0" maxOccurs="unbounded" />
7 </sequence>
8 </extension>
9 </complexContent>

10 </complexType>

meta-data
Commissioners probably require some of these fields to be present, especially a title and
a description. However, This data cannot be processed automatically and is not related
to Pause6 or CPAN6’s behavior.

As examples, ancreator is added here if he or she has no provable identity. The
publisher may represent a company or such in the traditional meaning ofthe word,
responsible for the publication of the material, but not theactual uploading the data into
the archive. So be careful what to put here.

1 <complexType name="meta-data">
2 <sequence />
3 </complexType>

A.2.1 Release states

release-state
A release will move from one state to the other. When a releaseis inuploading state,
it will not be available to deployers. When inpublished or embargo state, it will
only be available to authors. Theembargo means that the project has already suffient
signatures to go into thereleased state, but will be kept back by the daemon until
the embargo is lifted (see item A.2.2)

Releases which areexpired may still be available, although a clean-up may happen
during download of the release (which will result in an error). Thedeprecated state
of a release means that their are known problems with the release. The client may warn
users to upgrade.

Usually, the project was inreleased state when it got installed. The user will be
warned when the scribe (downloader) detects that release gets flagged asexpired,
rejected, ordeprecated on the source archive.

1 <simpleType name="release-state">
2 <restriction base="token">
3 <enumeration value="uploading" />
4 <enumeration value="published" />
5 <enumeration value="embargo" />
6 <enumeration value="released" />
7 <enumeration value="deprecated" />
8 <enumeration value="expired" />

17

9 <enumeration value="rejected" />
10 </restriction>
11 </simpleType>

release-state-change
Each state change is issued by someone or the cpan6 daemon; inany case, the identity
needs to be included. Then, zero or more signatures are required to get this state change
accepted.

1 <complexType name="release-state-change">
2 <complexContent>
3 <extension base="p6:initiated">
4 <sequence>
5 <element name="state" type="p6:release-state" />
6 </sequence>
7 </extension>
8 </complexContent>
9 </complexType>

A.2.2 Release Plan

release-plan
To change the release plan, you need to have therelease-plan-change rights.

1 <complexType name="release-plan">
2 <sequence>
3 <element ref="p6:release-plan-control"
4 minOccurs="0" maxOccurs="unbounded" />
5 </sequence>
6 </complexType>

release-plan-control

1 <element name="release-plan-control" type="p6:release-plan-control"
2 abstract="true" />
3
4 <complexType name="release-plan-control">
5 <complexContent>
6 <extension base="p6:initiated">
7 <sequence>
8 <element name="cancelled" type="p6:initiated" minOccurs="0" />
9 </sequence>

10 </extension>
11 </complexContent>
12 </complexType>

initiated
Used as base-class to anything which needs to be logged, triggered by a human or a
process. The identity usually lists the process which produced the log entry or the user
who request something.

1 <complexType name="initiated">
2 <sequence>

18

3 <element name="at" type="dateTime" />
4 <element name="by" type="c6:release-id" />
5 <element name="reason" type="c6:language-string"
6 minOccurs="0" maxOccurs="unbounded" />
7 </sequence>
8 </complexType>

embargo-time
Releases can be uploaded under embargo, which will block thetransition frompublished
until released state until the condition is reached. Meanwhile, the release will be
stuck in theembargo state, it will not be distributed to the deployers, and only avail-
able to authors.

When the release was alreadyreleased before the embargo was set, this probably is
done to correct a mistake. In this case, it is important not toallert the users who already
got the data. The release will still move intoembargo state, but users who have it
installed or downloaded must not be warned by the client software.

1 <element name="embargo-time" type="p6:embargo-time"
2 substitutionGroup="p6:release-plan-control" />
3
4 <complexType name="embargo-time">
5 <complexContent>
6 <extension base="p6:release-plan-control">
7 <sequence>
8 <element name="after" type="dateTime" />
9 </sequence>

10 </extension>
11 </complexContent>
12 </complexType>

embargo-release
The release of this version is delayed until one or more otherreleases from other projects
are available in the same archive.

1 <element name="embargo-release" type="p6:embargo-release"
2 substitutionGroup="p6:release-plan-control" />
3
4 <complexType name="embargo-release">
5 <complexContent>
6 <extension base="p6:release-plan-control">
7 <sequence>
8 <element name="need-release" type="c6:release-id"
9 minOccurs="1" maxOccurs="unbounded" />

10 </sequence>
11 </extension>
12 </complexContent>
13 </complexType>

is-final
New releases in the same strand are not accepted.

1 <element name="is-final" type="p6:is-final"
2 substitutionGroup="p6:release-plan-control"/>
3

19

4 <complexType name="is-final">
5 <complexContent>
6 <extension base="p6:release-plan-control" />
7 </complexContent>
8 </complexType>

expiration
Move the release to theexpired state after this moment. Whenkeep-last is set,
the release will not expire if it does not have a follow-up.

1 <element name="expiration" type="p6:expiration"
2 substitutionGroup="p6:expiration" />
3
4 <complexType name="expiration">
5 <complexContent>
6 <extension base="p6:release-plan-control">
7 <sequence>
8 <element name="after" type="dateTime" />
9 <element name="keep-last" type="boolean" default="true" />

10 </sequence>
11 </extension>
12 </complexContent>
13 </complexType>

deprecate
The ‘deprecated’ state is a special form of ‘released’: the release can still be the last
with respect to permissions, but will not be used on clients except when explicitly asked
for. Clients will also report the deprecation of installed software releases to users.

1 <element name="deprecate" type="p6:deprecate"
2 substitutionGroup="p6:release-plan-control" />
3
4 <complexType name="deprecate">
5 <complexContent>
6 <extension base="p6:release-plan-control">
7 <sequence>
8 <element name="after" type="dateTime" />
9 </sequence>

10 </extension>
11 </complexContent>
12 </complexType>

has-followup
When a release (independent on its current state) is followed by a newer release (defined
by the release strand definitions, not by the moment of release), it may automatically be
phased-out.

When theminimal-newer number of releases for this project in ‘released’ state are
sorted after this release, then the changes will get scheduled (probably irreversably).

When the condition is met, the specifieddeprecate-after duration is waited until
the release is flagged to be ‘deprecated’. Then, theexpire-after duration is waited,
before the release state changes into ‘expired’. Finally, anotherreject-after time-
span is waited before the release is prepared to be removed.

At least one of the fields must be specified, otherwise the whole plan is lost (removed).
The intermediate states may take longer then specified. It may also be possible that

20

the state changes cannot be implemented on-time, for instance when the whole archive
administration is distributed on a disk. In that case, the one-shot deployer must handle
these state changes and merge them dynamically into the static archive index.

1 <element name="has-followup" type="p6:has-followup"
2 substitutionGroup="p6:release-plan-control" />
3
4 <complexType name="has-followup">
5 <complexContent>
6 <extension base="p6:release-plan-control">
7 <sequence>
8 <element name="minimal-newer" type="int" default="1" />
9 <element name="deprecate-after" type="duration" default="0D" />

10 <element name="expire-after" type="duration" default="0D" />
11 <element name="reject-after" type="duration" default="0D" />
12 </sequence>
13 </extension>
14 </complexContent>
15 </complexType>

A.2.3 Release relations

A set of releases occupy one name-space location. These relations specify the order of succes-
sion.

The whole set of related releases contains one or morestrands, each containing one or
more versions of the project. A trail of releases is a logicalfollow-up, where each next re-
lease in the list has a super-set of functionality or contentfrom the previous. A new software
release MUST not break the described (the official) interface. When the release contains docu-
mentation, the next release will include all the previous documents adding new text, removing
mistakes, and typos fixed.

Parallel strands are used for diverting developments, likealpha-releases, which may break
compatibility or have limited applicability. Usually, people should avoid these releases, by
default stay away from these less certain paths. These diverted strands can be merged with
main-line later.

Release relations may need to be secured with signatures, and can therefore not be changed
after a release is been distributed. For this reason, relations can only refer back. Theversion
of the release itself is insufficient to represent the needs for parallel development, and thereby
only used for uniqueness.

release-parent
Back-reference to the release which was used to base this version on.

1 <complexType name="release-parent">
2 <simpleContent>
3 <extension base="c6:release-id">
4 <element name="relation" type="c6:release-parent-relation"
5 default="succeeds" maxOccurs="unbounded" />
6 </extension>
7 </simpleContent>
8 </complexType>

release-parent-relation
When this releasesucceeds the other, it is prefered to become used or installed by
the end-user. Preferred over the use of other releases within this strand, but not over

21

releases within other strands. You may succeed on multiple strands at the same time,
which means that those strands will be merged into one new.

You will need to fulfil the superset of the requirements for all merged releases, which
may imply a serious amount of signatures. For simplify this process, it may be useful
not to attempt to merge more than two strands with one new release.

Whendiverts is used, you start a new strand. You can only have one such relation-
ship for your release.

1 <simpleType name="release-parent-relation">
2 <restriction base="token">
3 <enumeration value="succeeds" />
4 <enumeration value="diverts" />
5 </restriction>
6 </simpleType>

A.2.4 Release dependencies

Various dependency relationships may exist between releases of different projects, maybe orig-
inating from different archives. Don’t forget that these relations are quite simple on the level
of CPAN6, and applications may want do implement a more complex schema.

The archive maintainer (Pause6) keeps track on relations between releases which are in
use. When some release is upgraded, this may break other applications which can not work
with that release. The user must get an options to bail-out before these horrors happen.

dependencies
The order of dependencies is important in the case where projects are listed multiple
times. In this case, the dependency resolver must know how the releases are structured
within the project’s name-space. The release specified is used as starting-point to flag all
releases which follow this one in the same releasetrail . Say, mentioning version 2.08
as minimal requirement of a software product will flag all other 2.xx releases which are
in the same trail, but not the 3.xx versions, because they have an incompatible usage
interface. When version 2.16 is specified asbreaking this will leave only 2.08 upto
2.15 as acceptable.

1 <complexType name="dependencies">
2 <sequence>
3 <element name="link" type="p6:release-link"
4 minOccurs="0" maxOccurs="unbounded" />
5 </sequence>
6 </complexType>

release-link
A relation between two projects is usually expressed with releases, but it can be defined
as a project as well, like usually meaning the last release ofthe main track. Use that
only when there is no knowledge about interoperatebility ofversions.

1 <complexType name="release-link">
2 <complexContent>
3 <extension base="c6:release-id">
4 <attribute name="for" type="p6:release-link-purpose" use="required" />
5 <attribute name="need" type="p6:release-link-need" default="required"
6 </extension>
7 </complexContent>
8 </complexType>

22

release-link-purpose
Specifies why this release is referenced to. Thebuildmeans that the release is needed
during the download, installation and test process, but after that not anymore. The sys-
tem may decide to remove that referenced release from the system after the installation
was successful, for instance by only downloading it into a temporary location.

When data from a release is run as a program or displayed as data, it may require assis-
tance of some releases: it willuse those releases.

Thesupport relation means that the release at hand contains information which is
based on some other release, usually with the same name in an other archive (an other
View on the project).

The contents of the release at hand contributes to the cloud of knowledge around that
other release: in contains tests, patches, documentation,and such, supporting the use
of that other release. The author is probably someone else. You may also see this as
additional services to end-users.

1 <simpleType name="release-link-purpose">
2 <restriction base="token">
3 <enumeration value="build" />
4 <enumeration value="use" />
5 <enumeration value="support" />
6 </restriction>
7 </simpleType>

release-link-need
When the referenced release is specified to berequired, it must be present before
this release can be handled. For optional links, the user mayget a choice whether to
get them beforehand or not. The client-side tool may also decide to take all optional
modules (and maybe ignore them when there are errors while building them) or default
to ignore all optional relations.

1 <simpleType name="release-link-need">
2 <restriction base="token">
3 <enumeration value="required" />
4 <enumeration value="optional" />
5 <enumeration value="conflicts" />
6 </restriction>
7 </simpleType>

A.3 Archives

archive
Defines the archive.

1 <element name="archive" type="p6:archive"
2 substitutionGroup="p6:role-player" />
3
4 <complexType name="archive">
5 <complexContent>
6 <extension base="p6:role-player">
7 <sequence>
8 <element name="constitution" type="p6:constitution" />
9 </sequence>

23

10 </extension>
11 </complexContent>
12 </complexType>

constitution

1 <complexType name="constitution">
2 <sequence>
3 <element name="board" type="p6:board" />
4 <element name="permissions" type="p6:permission-set"
5 maxOccurs="unbounded" />
6 <element name="name-space-layout" type="p6:name-space-layout" />
7 <element name="name-restrictions" type="p6:label-restrictions"
8 minOccurs="0" />
9 <element name="version-restrictions" type="p6:label-restrictions"

10 minOccurs="0" />
11 </sequence>
12 </complexType>

name-space-layout
The name-space layout limits the project and version labels, and the mime-types ac-
cepted by the archive.

1 <complexType name="name-space-layout">
2 <sequence>
3
4 <element name="accept-releases" minOccurs="0" maxOccurs="unbounded">
5 <sequence>
6 <element name="names" type="p6:label-restrictions" />
7 <element name="version" type="p6:label-restrictions" />
8 </sequence>
9 <attributeGroup ref="ff:mime-type-set" default="*/*" />

10 </element>
11
12 <element name="used-names" minOccurs="0">
13 <sequence>
14 <element name="constitution" type="c6:label"
15 default="pause6-constitution" />
16 <element name="index" type="c6:label" default="pause6-index" />
17 </sequence>
18 </element>
19
20 </sequence>
21 </complexType>

board

1 <complexType name="board">
2 <sequence>
3 <element name="member" type="p6:identity"
4 minOccurs="1" maxOccurs="unbounded" />
5 <element name="minimum-members" type="int"

24

6 minExclusive="0" default="1" />
7 </sequence>
8 </complexType>

label-restrictions
As xml-pattern, you specify an XML compliant pattern: when more than one pat-
tern is provided, any of them must match. Added to this list are the exactly specified
labels (equals). You may also use a (non-capturing) perl5 regular expression. By
default, all labels are selected.

The optional regular expression will reduce the set of selected labels, for instance in the
used character-set. Because of the power of regular expressions, you may be able to
avoid the use ofxml-patterns andequals.

1 <complexType name="label-restrictions">
2 <sequence>
3 <choice minOccurs="0" maxOccurs="unbounded">
4 <element name="equals" type="string" />
5 <element name="xml-pattern" type="pattern" />
6 </choice>
7 <element name="regex-perl5" type="string"
8 minOccurs="0" />
9 <element name="min-length" type="unsignedInt"

10 default="0" />
11 <element name="max-length" type="allNNI"
12 default="unbounded" />
13 </sequence>
14 </complexType>

mime-types-set
In the future, a more explicit definition of the mime-types may be given; therefore:
follow the rules of the RFCs! Both attributes can be a comma-seperated list. Both are
case-insensitive and ignore leadingx-. Themime-types components may contain*
to indicate a whole class, likevideo/*.

1 <attributeGroup name="mime-types-set">
2 <attribute name="mime-types" type="string" />
3 <attribute name="mime-type" type="string" />
4 </attributeGroup>

protocol
Specifies the Pause6 level.

1 <element name="protocol" type="anyURI" />

A.4 Processes

role-player
Roles are played by components which can live in separate processes. In the implemen-
tation, they may get mapped on different threads or system processes. Although, they
may also be run by one user program together.

Theidentity is a private identity description, which also contains the information
about the location of the public identity.

The algorithms specify which choices were made by the role-player, i.e. which
requirements are set to understand how the role-players meta-data.

25

1 <complexType name="role-player">
2 <sequence>
3 <element name="address" type="anyURI" />
4 <element name="identity" type="c6:release-id" />
5 <element name="algorithms" type="c6:algorithms" />
6 </sequence>
7 </complexType>

A.5 Store

The basic store components are implemented in name-spacePause6::Store.
Thestore is a process and the administration which manages one copy ofthe data of any

number of archives. Each archive has its ownrepository.
A store is maintained by the daemon. The store administration is always on the local

system, for performance reasons. Either as files on disk or ina database. Some stores copy the
data to external systems, for instance the FTP implementation of a store.

Stores will be defined on system and/or user level. Before an archive can use a store, it
will need to register itself in the store, because the administrator of the store may impose all
kinds of restrictions.

store
A store is a process which administers a storage space, and can receive request for
load and save via a socket.

1 <element name="store" type="p6:store"
2 substitutionGroup="p6:role-player" />
3
4 <complexType name="store">
5 <complexContent>
6 <extension base="p6:role-player">
7 <sequence>
8 <element name="remote" type="p6:scribe-interface"
9 minOccurs="0" maxOccurs="unbounded" />

10 <element name="keeper" type="p6:store-keeper" />
11 </sequence>
12 </extension>
13 </complexContent>
14 </complexType>

store-keeper
The part of the store which is responsible for maintaining the data. The meta-data and
files can be kept on one spot, or on different locations.

Access rights are determined by the environment. In case this keeper is used by a Store,
that will determine the authorization to write. In other cases, this may be part of a user
process, which uses platform native access restrictions.

1 <element name="store-keeper" type="p6:store-keeper" />
2 <complexType name="store-keeper">
3 <choice>
4 <element name="all" type="p6:scribe-interface" />
5 <sequence>
6 <element name="meta" type="p6:scribe-interface" />
7 <element name="data" type="p6:scribe-interface" />
8 </sequence>

26

9 </choice>
10 </complexType>

repository

1 <element name="repository">
2 <complexType>
3 <sequence>
4 <element name="store" type="c6:release-id" />
5 <element name="archive" type="c6:release-id" />
6 <element name="created" type="p6:initiated" />
7 </sequence>
8 </complexType>
9 </element>

file-system
Probably most stores will be file-system based, sometimes ina way that you can see the
names of archives, projects and version, sometimes with abstract names. In any case,
you can bump into platform specific limits.

Whenmax-name-length is not defined, Thefile-system details may refer to
details of a remote store, like ftp-server. Access to a case-insensitive file-system via
UNIX may be slow.

1 <element name="file-system" type="p6:file-system" />
2 <complexType name="file-system">
3 <sequence>
4 <element name="name-restrictions" type="p6:name-restrictions" />
5 </sequence>
6 <attribute name="type" type="string" />
7 <attribute name="revision" type="string" />
8 <attribute name="platform" type="string" />
9 </complexType>

A.6 Scribe

The basic store components are implemented in name-spacePause6::Scribe.

scribe
A scribe is a process which handles communication between processesand between
processes and their physical world.

1 <element name="scribe" type="p6:scribe"
2 substitutionGroup="p6:role-player" />
3
4 <complexType name="scribe">
5 <complexContent>
6 <extension base="p6:role-player">
7 <sequence>
8 <element name="interface" type="p6:scribe-interface"
9 minOccurs="1" maxOccurs="unbounded" />

10 <any processContent="#lax" />
11 </sequence>
12 </extension>

27

13 </complexContent>
14 </complexType>

scribe-capabilities
The scribe will write to disk or send the data to a remote server. This server has real
physical limits, which must be known to safely administer the archive. Those limits
can sometimes be autodetected usingPause6::Scribe::Autodetect function
medium-limits.

The length values are in bytes, which may differ from the characters when unicode
encoding is available.

This data-structure is also used to list additional user limits on files for the medium. For
instance, because the user knows that other applications may break when long filenames
are used. Both user as system limits are to be obeyed.

1 <complexType name="scribe-capabilities">
2 <sequence>
3 <element name="name" type="c6:label" />
4 <element name="character-set" type="token" default="utf-8" />
5 <element name="case-sensitive" type="boolean" default="true" />
6 <element name="accept-chars" type="string" minOccurs="0" />
7 <element name="encode-chars" type="string" minOccurs="0" />
8 <element name="max-name-length" type="int" minOccurs="0" />
9 <element name="max-ext-length" type="int" minOccurs="0" />

10 <element name="max-path-length" type="int" minOccurs="0" />
11 <element name="read-only" type="boolean" default="false" />
12 <element name="max-file-size" type="integer" minOccurs="0" />
13 <element name="symbolic-links" type="boolean" default="true" />
14 <choice>
15 <element name="legal-name" type="pattern"
16 minOccurs="0" maxOccurs="unbounded" />
17 <element name="illegal-name" type="pattern"
18 minOccurs="0" maxOccurs="unbounded" />
19 </choice>
20 </sequence>
21 </complexType>

A.7 Authentication

The public and private identities are created together. Thepublic identity shall be made avail-
able to everyone, where the private part is only accessible to the authors and publishers of the
identity release.

identity-public
The public identity relates to a private identity. It contains information which everyone
is permitted to see, for instance a personal description fora blog and public-keys for an
asymetric encrypted connection.

1 <element name="identity-public" type="p6:identity-public" />
2
3 <complexType name="identity-public">
4 <sequence>
5 <choice>
6 <element name="user" type="p6:person" />
7 <element name="system" type="p6:process" />

28

8 <element name="process" type="p6:process" />
9 </choice>

10 <element name="authorization" type="p6:authorization" />
11 <any processContents="lax" minOccurs="0" maxOccurs="unbounded" />
12 </sequence>
13 </complexType>

identity-private
Collects the identity information which is not to be accessible by other people or pro-
cesses.

1 <element name="identity-private" type="p6:identity-private" />
2
3 <complexType name="identity-private">
4 <sequence>
5 <element name="identity-public" type="c6:release-id" />
6 <element name="authorization" type="p6:authorization" />
7 </sequence>
8 </complexType>

destination
The data which relates with this destination structure can be used when both thehost
and theservicerestrictions are fulfilled.

Thehost fields can each contain a list of host or domain names, and CIDRnotations
of IP-addresses. The related data can be used when nohost fields are present or when
the connection matches at least one item in the specified list.

As services, you can (case-insensively) use any IANA defined port name orport
number1. For instance, a valid value would be “ftp 21 HTTP”. Port names and numbers
which are not understood are silently ignored.

1 <complexType name="destination">
2 <sequence>
3 <element name="host" type="NMTOKENS"
4 minOccurs="0" maxOccurs="unbounded" />
5 <element name="service" type="NMTOKENS" />
6 </sequence>
7 </complexType>

A.8 Rights

admin-rights
The list of permissions wil certainly grow. A list of this rights is used for various pur-
poses: to express capabilities, limits, and vote requirements.

1 <simpleType name="admin-rights">
2 <restriction base="token">
3 <enumeration value="constitution-change" />
4 <enumeration value="archive-list-change" />
5 <enumeration value="project-delete" />
6 <enumeration value="project-start" />
7 <enumeration value="release-publish" />
8 <enumeration value="release-embargo" />

1On UNIX, have a look at/etc/services.

29

9 <enumeration value="release-accept" /> <!--released-->
10 <enumeration value="release-reject" />
11 <enumeration value="release-plan-change" />
12 </restriction>
13 </simpleType>

permission-class
Used to indicate the community to which a set of permission applies. Theautors-defaults
andauthors-maximum are set by the board to limit the freedom of the project au-
thors. Theauthors andnon-authors are used by project authors, as meta-data
item inside a release.

1 <simpleType name="permission-class">
2 <restriction base="token">
3 <enumeration value="board-members" />
4 <enumeration value="authors" />
5 <enumeration value="author-defaults" />
6 <enumeration value="author-maximum" />
7 <enumeration value="non-authors" />
8 </restriction>
9 </simpleType>

permission-set
Groups sets of rights for one target community. All permission flags should only be
used once within this container. Unspecified permission flags will have a default.

1 <complexType name="permission-set">
2 <sequence>
3 <element name="permissions" type="p6:signatures-required"
4 minOccurs="0" maxOccurs="unbounded" />
5 </sequence>
6 <attribute name="class" type="p6:permission-class"
7 use="required" />
8 </complexType>

signature
One signature package, which can be checked. When the signer(attributeby) informa-
tion (is a versioned release) is not available, or its version got deprecated, or the infras-
tructure to check this identity is not available, then the signature should be ignored. In
other cases, an failing check should block use of the signed release.

1 <complexType name="signature">
2 <complexContent>
3 <extension base="p6:initiated">
4 <sequence>
5 <element name="type" type="p6:signature-type" />
6 <element name="encoding" type="c6:encoding-type" />
7 <element name="autograph" type="string" />
8 </sequence>
9 </extension>

10 </complexContent>
11 </complexType>

signature-type

30

1 <simpleType name="signature-type">
2 <restriction base="token">
3 <enumeration value="PGP" />
4 <enumeration value="SSL2" />
5 <enumeration value="SSL3" />
6 </restriction>
7 </simpleType>

signatures-required
The minimum number of signatures required for a set of permissions.

1 <complexType name="signatures-required">
2 <sequence>
3 <element name="permit">
4 <simpleType>
5 <list itemType="p6:admin-rights" />
6 </simpleType>
7 </element>
8 </sequence>
9 <attribute name="minimum" type="p6:signature-count"

10 use="required" />
11 </complexType>

signature-count
The named situations are especially useful for the board, although it can be used ev-
erywhere. Symbolic names have the advantage when the numberof authors or board
changes: the count probably does not need to change in that case.

1 <simpleType name="signature-count">
2 <union>
3 <simpleType>
4 <restriction base="int">
5 <minInclusive value="0" />
6 </restriction>
7 </simpleType>
8 <simpleType>
9 <restriction base="token">

10 <enumeration value="all" />
11 <enumeration value="all-but-one" />
12 <enumeration value="majority" />
13 <enumeration value="never" />
14 <enumeration value="none" /> <!-- 0 -->
15 </restriction>
16 </simpleType>
17 </union>
18 </simpleType>

A.9 Trust

trust
Trust is a calculated value, based on the way data is distributed and signed. A higher
value means a higher trust. The more processes and steps are involved in the process,
the lower the trust will be.

31

The trust value is dynamic: when a release is signed with a very trusted public key (for
instance exchanged during some meeting in person), and thatkey expires, all releases
which where downloaded using that key will be lowered in trust immediately. This may
cause warning messages to system administrators which use these releases.

1 <simpleType name="trust">
2 <restriction base="float">
3 <minInclusive value="0.0" />
4 <maxInclusive value="100.0" />
5 </restriction>
6 </simpleType>

B Schema: Pause6 file formats

Thepause6-basic schema defines content which is useful for Pause6 organization. This
schema defines wrappers around the data elements, to be able to store them in files on disk or
a database.

B.1 Schema wrapper

1 <schema
2 xmlns="http://www.w3.org/2001/XMLSchema"
3 elementFormDefault="qualified"
4
5 targetNamespace="http://cpan6.net/2008/pause6-files"
6 schemaLocation="https://xml.cpan6.net/schema/2008/pause6-files.xsd"
7 version="1.0"
8
9 xmlns:ff="http://cpan6.net/2008/pause6-files"

10 xmlns:p6="http://cpan6.net/2008/pause6-basic"
11 xmlns:c6="http://cpan6.net/2008/cpan6-basic"
12 >
13
14 <import
15 namespace="http://cpan6.net/2008/pause6-basic"
16 location="https://xml.cpan6.net/schema/2008/pause6-basic.xsd" />
17
18 <import
19 namespace="http://cpan6.net/2008/cpan6-basic"
20 location="https://xml.cpan6.net/schema/2008/cpan6-basic.xsd" />

B.2 Filerelease-log.xml

release-log-entry

1 <simpleType name="release-log-entry">
2 <choice>
3 <element name="request" type="state-change-request" />
4 <element name="confirmed" type="state-change-confirmed" />
5 <element name="trace" type="daemon-trace" />
6 <element name="signature" type="state-approved" />
7 </choice>

32

8 </simpleType>

state-change-request

1 <complexType name="state-change-request">
2 <complexContent>
3 <extension base="p6:initiator">
4 <sequence>
5 <element name="state" type="p6:release-state" />
6 </sequence>
7 </extension>
8 </complexContent>
9 </complexType>

state-change-confirmed

1 <complexType name="state-change-confirmed">
2 <complexContent>
3 <extension base="p6:initiator">
4 <sequence>
5 <element name="state" type="p6:release-state" />
6 <element name="votes" type="p6:signatures-count" />
7 </sequence>
8 </extension>
9 </complexContent>

10 </complexType>

B.3 Filearchive-log.xml

archive-log-entry

1 <complexType name="archive-log-entry">
2 <complexContent>
3 <extension base="initiated">
4 <sequence>
5 <element name="release" type="ff:visible-release-change" />
6 </sequence>
7 </extension>
8 </complexContent>
9 </complexType>

visible-release-change

1 <complexType name="visible-release-change">
2 <sequence>
3 <element name="state" type="p6:release-state" />
4 <element name="total-size" type="c6:size" />
5 </sequence>
6 <attributeGroup ref="p6:release-label" />
7 </complexType>

33

B.4 Filearchive-list.xml

archive-list-entry

1 <complexType name="archive-list-entry">
2 <complexContent>
3 <extension base="p6:initiated">
4 <sequence>
5 <element name="archive" type="ff:archive-definition" />
6 </sequence>
7 </extension>
8 </complexContent>
9 </complexType>

archive-definition

1 <complexType name="archive-definition">
2 <sequence>
3 <element name="id" type="c6:release-id" />
4 <element name="trust" type="p6:trust" />
5 <element name="alias" type="c6:label"
6 minOccurs="0" maxOccurs="unbounded" />
7 </sequence>
8 </complexType>

B.5 Filesstatus-current.xml and status-next.xml

release-state-which

1 <simpleType name="release-state-which">
2 <restriction base="token">
3 <enumeration value="CURRENT" />
4 <enumeration value="NEXT" />
5 </restriction>
6 </simpleType>

status-to-sign

1 <complexType name="status-to-sign">
2 <sequence>
3 <element name="status-seqnr" type="int" />
4 <element name="release" type="p6:release" />
5 <element name="state" type="p6:release-state" />
6 </sequence>
7 </complexType>
8

release-status-description

34

1 <complexType name="release-status-description">
2 <sequence>
3 <element name="to-sign" type="ff:status-to-sign" />
4 <element name="signature" type="p6:signature"
5 minOccurs="0" maxOccurs="unbounded" />
6 </sequence>
7 </complexType>

state-approved

1 <complexType name="state-approved">
2 <complexContent>
3 <extension base="p6:initiated">
4 <sequence>
5 <element name="signature" type="p6:signature" />
6 </sequence>
7 </extension>
8 </complexContent>
9 </complexType>

B.6 Fileconstitution.xml

B.7 Filerepository.xml

repository-index
The index is needed for situations where there is no fast indexing support for the meta-
data, i.e, when the data is not stored in a database. The indexwill need to be regenerated
on regular basis.

1 <element name="repository-index">
2 <complexType>
3 <element name="generated" type="dateTime" />
4 <sequence>
5 <element name="project-summary" type="ff:project-summary"
6 minOccurs="0" maxOccurs="0" />
7 </sequence>
8 </complexType>
9 </element>

name-summary
Summary about one name.

1 <element name="name-summary">
2 <complexType>
3 <sequence>
4 <element name="sum-size" type="nonNegativeInteger" />
5 <element name="nr-releases" type="nonNegativeInteger" />
6 <element name="last-update" type="dateTime" />
7 </sequence>
8 <attribute name="source" type="c6:address" use="required" />
9 <attribute name="name" type="c6:label" use="required" />

10 </complexType>
11 </element>

35

repository-release
Each released file may appear more than once, but at least once. It may be so that the
file’s original name (inpath) can be recognized from the location URI, but it may not
be.

1 <element name="repository-release">
2 <complexType>
3 <sequence>
4 <element name="release" type="c6:release-label" />
5 <element name="item" type="c6:encapsulated-item"
6 minOccurs="0" maxOccurs="unbounded" />
7 </sequence>
8 <attribute name="store" type="c6:address" />
9 <attribute name="archive" type="c6:address" />

10 </complexType>
11 </element>

B.8 Filesfilesystem.xml

file-system-descriptions

1 <element name="file-system-descriptions">
2 <complexType>
3 <sequence minOccurs="0" maxOccurs="unbounded">
4 <element ref="p6:file-system" />
5 </sequence>
6 </complexType>
7 </element>

B.9 User configuration,pause6-config.xml

Objects of this type collect information to simplify the life of humans, using Pause6/CPAN6:
the source/name/version triplet for items it too long to type.

user-config
Keeps pause6 specific preferences of a human.

1 <element name="user-config" type="p6f:user-config" />
2
3 <complexType name="user-config">
4 <sequence>
5 <element name="aliases" type="p6f:user-aliases"
6 minOccurs="0" maxOccurs="unbounded" />
7 </sequence>
8 </complexType>

user-aliases
Each block ofuser-aliases relates to a type of releases, which may bepublication
for some kind of content, or for instancearchive or identity.

Alias names can be reused in different user-aliases lists, as long as their definitions are
in different classes. Each class should only appear once, for clarity.

36

1 <complexType name="user-aliases">
2 <sequence>
3 <element name="alias" type="p6f:user-alias"
4 minOccurs="0" maxOccurs="unbounded" />
5 </sequence>
6 <attribute name="class" type="token" />
7 </complexType>

user-alias
An alias is solely meant to simplify the interaction with humans. It is not simple to
remember release ids for seperate publications and remember in which archives they
reside. Aliases shallneverappear in the pause6 or cpan6 protocol.

For instance, the alias “me”, could refer to my private identity description, as stored
in my own private archive. Theusers-aliases class in which this alias is listed
should be “identity”.

When no archive is specified (or when non of the specified archives can be contacted),
the source address of the release must be used to collect thatinformation.

1 <complexType name="user-alias">
2 <sequence>
3 <element name="release" type="c6:release-id" />
4 <element name="archive" type="c6:release-id" />
5 </sequence>
6 <attribute name="alias" type="NMTOKENS" />
7 </complexType>

C Schema: Pause6 messages

The schema defined in this section defines messages types usedfor Pause6. They extend the
basic types of CPAN6.

C.1 Schema wrapper

1 <schema
2 xmlns="http://www.w3.org/2001/XMLSchema"
3 elementFormDefault="qualified"
4
5 targetNamespace="http://cpan6.net/2008/pause6-messages"
6 schemaLocation="https://xml.cpan6.net/schema/2008/pause6-messages.xsd"
7 version="1.0"
8
9 xmlns:p6="http://cpan6.net/2008/pause6-basic"

10 xmlns:c6="http://cpan6.net/2008/cpan6-basic"
11 xmlns:c6m="http://cpan6.net/2008/cpan6-messages"
12 xmlns:c6s="http://cpan6.net/2008/cpan6-stable"
13 >
14
15 <import
16 namespace="http://cpan6.net/2008/pause6-basic"
17 location="https://xml.cpan6.net/schema/2008/pause6-basic.xsd" />
18
19 <import

37

20 namespace="http://cpan6.net/2008/cpan6-basic"
21 location="https://xml.cpan6.net/schema/2008/cpan6-basic.xsd" />
22
23 <import
24 namespace="http://cpan6.net/2008/cpan6-messages"
25 location="https://xml.cpan6.net/schema/2008/cpan6-messages.xsd" />
26
27 <import
28 namespace="http://cpan6.net/2008/cpan6-stable"
29 location="https://xml.cpan6.net/schema/2008/cpan6-stable.xsd" />

This messages asks a list all releases, only supporting simple filtering. It is used by scribes
to make an inventory of all releases to be copied. The data is directly taken from the archive-
log.

This message is not meant for normal users. They should use the search interface to get a
much smaller set of answers, probably optimized with database searches.

list-releases-request
The scribe can request only releases with certain states. Bydefault, only released and
deprecated releases are returned. With theonly-last flag set, only the last version
of each project is returned.

1 <element name="list-releases-request"
2 substitutionGroup="c6m:request-message">
3 <complexType>
4 <complexContent>
5 <extension base="c6m:message-lrr-type">
6 <sequence>
7 <element name="states" type="p6:release-state"
8 minOccurs="0" maxOccurs="unbounded" />
9 <element name="types" type="p6:project-type"

10 minOccurs="0" maxOccurs="unbounded" />
11 </sequence>
12 </extension>
13 </complexContent>
14 </complexType>
15 </element>

list-releases-answer

1 <element name="list-releases-answer"
2 substitutionGroup="c6m:answer-message">
3 <complexType>
4 <complexContent>
5 <extension base="c6m:message-lra-type">
6 <sequence>
7 <element name="release" type="p6:visible-release-change"
8 minOccurs="0" maxOccurs="unbounded" />
9 </sequence>

10 </extension>
11 </complexContent>
12 </complexType>
13 </element>

38

C.2 Accept signature

accept-signature-request

1 <element name="accept-signature-request"
2 substitutionGroup="c6m:request-message">
3 <complexType>
4 <complexContent>
5 <extension base="c6m:request-message-type">
6 <sequence>
7 <element name="release" type="p6:release-label" />
8 <element name="signature" type="p6:signature" />
9 <element name="status-seqnr" type="positiveInteger" />

10 </sequence>
11 </extension>
12 </complexContent>
13 </complexType>
14 </element>

accept-signature-answer

1 <element name="accept-signature-answer"
2 substitutionGroup="c6m:answer-message">
3 <complexType>
4 <complexContent>
5 <extension base="c6m:answer-message-type">
6 <sequence>
7 <element name="votes-received" type="p6:vote-count" />
8 <element name="votes-required" type="p6:vote-count" />
9 </sequence>

10 </extension>
11 </complexContent>
12 </complexType>
13 </element>

C.3 Get release status

get-release-status-request

1 <element name="get-release-status-request"
2 substitutionGroup="c6m:request-message">
3 <complexType>
4 <complexContent>
5 <extension base="c6m:request-message-type">
6 <sequence>
7 <element name="release" type="p6:release-label" />
8 <element name="which" type="ff:release-state-which" />
9 </sequence>

10 </extension>
11 </complexContent>
12 </complexType>

39

13 </element>

get-release-status-answer

1 <element name="get-release-status-answer"
2 substitutionGroup="c6m:answer-message">
3 <complexType>
4 <complexContent>
5 <extension base="c6m:answer-message-type">
6 <sequence>
7 <element name="status"
8 type="p6:release-status-description" />
9 <element name="votes-received" type="p6:vote-count" />

10 <element name="votes-required" type="p6:vote-count" />
11 </sequence>
12 </extension>
13 </complexContent>
14 </complexType>
15 </element>

References

[1] Overmeer and Vilain,CPAN6 and Pause6 Design.

[2] Overmeer and Vilain,CPAN6 Implementation.

40

Index

accept-signature-answer, 39
accept-signature-request, 39
admin-rights, 29
archive, 23
archive-definition, 34
archive-list-entry, 34
archive-log-entry, 33

board, 24

constitution, 24

dependencies, 22
deprecate, 20
destination, 29

embargo-release, 19
embargo-time, 19
expiration, 20

file-system, 27
file-system-descriptions, 36

get-release-status-answer, 40
get-release-status-request, 39

has-followup, 20

identity-private, 29
identity-public, 28
initiated, 18
is-final, 19

label-restrictions, 25
list-releases-answer, 38
list-releases-request, 38

meta-data, 17
mime-types-set, 25

name-space-layout, 24
name-summary, 35

pause6-release, 16
permission-class, 30
permission-set, 30
protocol, 25

release-component, 16
release-link, 22
release-link-need, 23
release-link-purpose, 23

release-log-entry, 32
release-parent, 21
release-parent-relation, 21
release-plan, 18
release-plan-control, 18
release-state, 17
release-state-change, 18
release-state-which, 34
release-status-description, 34
repository, 27
repository-index, 35
repository-release, 36
role-player, 25

scribe, 27
scribe-capabilities, 28
signature, 30
signature-count, 31
signature-type, 30
signatures-required, 31
state-approved, 35
state-change-confirmed, 33
state-change-request, 33
status-to-sign, 34
store, 26
store-keeper, 26

trust, 31

user-alias, 37
user-aliases, 36
user-config, 36

visible-release-change, 33

41

